Q&A 1 What is the goal of supervised learning?
1.1 Explanation
Supervised learning aims to learn a mapping from input features (X) to a target variable (y), based on labeled training data. The model can then make predictions on new, unseen data.
## Python Code
# Supervised learning example: simple linear regression
from sklearn.linear_model import LinearRegression
import pandas as pd
# Sample data
df = pd.DataFrame({
"X": [1, 2, 3, 4, 5],
"y": [2, 4, 6, 8, 10]
})
model = LinearRegression()
model.fit(df[["X"]], df["y"])
print("Model coefficient:", model.coef_[0])Model coefficient: 2.0
1.2 R Code
# Supervised learning example: simple linear regression
df <- data.frame(X = 1:5, y = c(2, 4, 6, 8, 10))
model <- lm(y ~ X, data = df)
summary(model)
Call:
lm(formula = y ~ X, data = df)
Residuals:
1 2 3 4 5
1.778e-16 -3.753e-16 1.314e-16 1.518e-16 -8.575e-17
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.000e+00 2.841e-16 0.000e+00 1
X 2.000e+00 8.565e-17 2.335e+16 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.709e-16 on 3 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: 5.452e+32 on 1 and 3 DF, p-value: < 2.2e-16